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An implementation is described of R. F. W. Bader's [Atoms in Molecules: a

Quantum Theory (1990). Oxford: Clarendon Press] virial fragmentation of the

electron density as applied to experimentally determined electron densities. It is

analogous to the PROMEGA method [Keith (1993), PhD thesis, McMaster

University, Ontario, Canada]. Integrated atomic properties have been

determined using the models from two recent accurate charge-density studies:

methylammonium hydrogen succinate monohydrate and methylammonium

hydrogen maleate.

1. Introduction

Several schemes to de®ne `atomic' charges have been

proposed (Hirshfeld, 1977; Mulliken, 1955; Bader, 1990;

Spackman & Byrom, 1996), some of which have been used in

experimental electron-density studies. Meister & Schwarz

(1994) give an extended survey of atomic charge de®nitions.

Generally, the methods can be divided into two distinct classes

based on the boundary type of the atoms, i.e. fuzzy or discrete

boundaries.

Bader's quantum theory of atoms in molecules (QTAM)

(Bader, 1990) is a well established tool to characterize electron

densities derived from theoretical calculations. It can readily

be extended to cover three-dimensionally periodic electron

densities (Zou & Bader, 1994; Tsirelson et al., 1995).

Using the de®nition of a virial fragment to partition an

electron density, the concept of an atom emerges where

discrete boundaries separate the atoms. This de®nition is

®rmly based on quantum-mechanical methods. Recently, the

QTAM has been successfully applied to experimentally

determined electron densities derived from X-ray single-

crystal diffraction data (Flensburg et al., 1995; Howard et al.,

1995; Bianchi et al., 1996; Espinosa et al., 1996; Roversi et al.,

1996; KoritsaÂnszky et al., 1998; Madsen, Flensburg & Larsen,

1998; Madsen, Iversen et al., 1998). These analyses have been

based on the location and characterization of critical points

[r��rc� � 0] for intramolecular and hydrogen-bond interac-

tions in the electron density.

The previous implementations of Bader's partitioning

scheme have been applied to molecular (Biegler-KoÈ nig et al.,

1982; Stefanov & Cioslowski, 1995; Popelier, 1994) and peri-

odic ab initio calculations (Gatti et al., 1994). None of these

implementations have been applied to experimentally deter-

mined electron densities ± wherefore we decided to implement

Bader's partitioning scheme in the VALRAY program

(Stewart et al., 1998).

This implementation is conceptually based on the algorithm

called PROMEGA, which was ®rst proposed by Keith (1993)

and has recently been described in detail by Popelier (1998).

In VALRAY, the rigid pseudo-atom model of Stewart

(1976) is used to model the charge density in the crystal-

lographic unit cell.

The underlying assumption is that only pure kinematic or

dynamic X-ray scattering gives rise to the measuring of

photons at the detector. Other physical interactions should be

eliminated/corrected for before the modelling of the electron

density takes place. Deconvolution of the electron and the

nuclear density distributions is another approximation of this

model. The electron density of an atom follows rigidly (i.e.

without distortion) the nuclear position.

It should be emphasized that the static electron density

determined from X-ray diffraction methods is not a quantum

object but rather, as described by R. F. Stewart (1991), `the

ghost of a quantum object'. It is therefore interesting to

elucidate any differences between results of the Bader parti-

tioning obtained from ab initio and experimentally deter-

mined charge densities, respectively. Current research

(Flensburg & Gatti, 1997, 1999) indicates that there is excel-

lent agreement between atomic properties determined from

theoretical and experimentally determined electron densities.

Obtaining atomic properties from experimentally determined

electron densities is therefore a viable route, especially for

characterizing intermolecular interactions.

In this work, we present a topological analysis where the

boundaries of the gradient ®eld are determined and a subse-

quent integration over the atomic basins is performed.



2. Description of the algorithm

The algorithm is based on two properties of the atomic basin:

(i) The interatomic surface (IAS) is never crossed by a

gradient path (of the electron density ± hereafter in short

`gradient path'); (ii) all gradient paths terminate at an

attractor ± except for gradient paths lying in the surface, which

terminate at bond or ring critical points.1 Using these prop-

erties, a set of points arbitrarily close to the IAS can be

determined.

A set of rays emanating from the attractor is constructed in

a spherical-polar coordinate system so that the rays in each �
plane on the unit sphere have the same �' separation. The

integration thereby becomes less dependent on the choice of

coordinate system (more `rotationally invariant'), which is not

the case if a standard division is chosen. A standard division of

the �; ' grid into an equal number of ' points for each � plane

will yield a more dense concentration of integration points

near the poles, i.e. for � � f0; �g.
Points in the direction of a given ray at various distances

from the attractor are used to determine the intersection of

the ray with the IAS. See Fig. 1. When the starting point of the

ray is inside the atomic basin belonging to the attractor, a trace

along the gradient will terminate at the attractor itself. When

the starting point of the ray is on the other side of the inter-

section of the IAS, the trace along the gradient will terminate

at another attractor.

In the direction of a given ray, the distance of the ®rst point

is chosen as 0.8 times the length of the previous ray (the

distance from the attractor to the IAS). This was found

empirically to give the most ef®cient implementation. If the

®rst point on a ray is found to be outside the basin of the

attractor, the length is set to a preset value by the user (a so-

called � sphere). That value is also used for the very ®rst ray.

The next starting point, in the direction of a given ray, from

which the gradient is traced, is given by a constant increment

until the IAS is crossed. In that case, the increment is halved.

This is repeated until the increment is below a given threshold

(typically 10ÿ4 AÊ ).

Our implementation does not take into account that rays

emanating from the attractor may have multiple intersections

with the IAS. In the systems investigated so far, summations of

the integrated atomic volumes have been very close to the

unit-cell volume, indicating that this simpli®cation of the

algorithm is acceptable in most cases (cf. x3.2).

Given the set of points arbitrarily close to the IAS, several

properties can be determined by performing an integration

over the atomic basin. The three-dimensional integration is

divided into three one-dimensional integrations, two angular

and one radial. In the two angular dimensions (�; '), a

trapezoidal integration technique is used while a Gauss±

Legendre integration method (Press et al., 1988) is used for the

radial dimension. With the software, we are at present able to

compute the following integrated properties: volume, Lapla-

cian, charge, and each component of the dipole moment and

quadrupole moments,2 respectively. This can of course be

extended to enable the computation of any atomic property

depending on the electron density or its derivatives.

As an estimate of the accuracy of the IAS determination

and the integration, three measures can be used. Firstly, the

total number of electrons in the unit cell, F(000), is known.

Secondly, the unit-cell volume is known and, ®nally, the inte-

grated Laplacian of each basin should be zero (Bader, 1990).

For the number of electrons and the total volume, we use the

error de®nitions:

Nerr �P



m
N
 ÿ Ncell

.
Ncell

Verr �P



m
V
 ÿ Vcell

.
Vcell;

where m
 is the site multiplicity for atom 
 and for the

integrated Laplacian:

Lerr � P



L2



.
Natoms

� �1=2

:

Errors in the order of 0.01 and 0.1% for the number of elec-

trons and the volume, respectively, are usually obtained for

molecular systems. Lerr is generally about 3 � 10ÿ3 e AÊ ÿ2. The

integrated outer moments of the atoms can also be used to

validate the IAS determination and subsequent integration

since they have to exhibit the site symmetry of the atoms; e.g.,

for an atom in a mirror plane, the dipole-moment-component

perpendicular to the mirror plane must be zero.

3. Examples

High-resolution charge-density studies based on X-ray and

neutron diffraction data have recently been carried out on two

dicarboxylic acid salts of the methylammonium ion,

methylammonium deuterium maleate (MADMA) (Madsen,

Flensburg & Larsen, 1998) and methylammonium hydrogen

succinate monohydrate (MAHS) (Flensburg et al., 1995). The

labelling scheme of the two compounds is shown in Fig. 2.

There is a wide variety of strong and weak inter- and

intramolecular interactions in the two structures. In both salts,

all possible donor atoms are involved in hydrogen bonds,

linking the entities in such a way that the anions and the

cations form alternating layers. In MADMA, there are two

strong symmetric intramolecular OÐHÐO hydrogen bonds

and in MAHS there is one strong symmetric intermolecular

OÐHÐO hydrogen bond. The NÐH� � �O interactions in both
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Table 1
Global errors of the integrations of MAHS and MADMA.

Compound Nerr(%) Verr(%) Lerr(10ÿ3 e AÊ ÿ2)

MAHS ÿ0.05 ÿ0.25 2.2
MADMA ÿ0.07 ÿ0.38 5.9

1 For a description of the different types of critical points in the electron
density, see e.g. Bader (1990).

2 Buckingham's de®nition of the quadrupole moment is used. This can be
transformed to the traceless second-moment radial tensor (Spackman, 1992).
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structures have NÐO distances of 2.7±2.9 AÊ . The O atom in

the water molecule of MAHS participates in OÐH� � �O
hydrogen bonds.

3.1. Determination of the IAS

The electron density at a given point is calculated as the

contributions from all pseudo-atoms within a radius of a cut-

off limit. For the present calculations, a cut-off of 7 AÊ was

used. The CPU time used for both the IAS determination and

integration varies from 1/2 hour upwards per atom on a Silicon

Graphics Challenge R10000 computer. The CPU time

depends on the required integration accuracy and the

complexity of the system, e.g. the number of atoms in the unit

cell and the irregularity of the shape of the IASs. The deter-

mination of the IAS is the time-consuming part of the algor-

ithm. All the determined atomic properties are therefore

integrated at the same time. In the examples given here, the

surfaces were determined with 48 � planes yielding a set of

2788 points on each IAS. We used between 64 and 192 radial

divisions giving between 200k and 535k integration points per

atom. Using this number of integration points and strict

requirements for the IAS determinations, the CPU time per

atom used to calculate the results for MAHS and MADMA

varied from 10 to 20 h.

3.2. Integration of atomic basins

A summation of the volumes and electron populations for

the unit cell gave Vc and F(000) within 0.4 and 0.1%,

respectively, in both compounds. The integrated Laplacian

was of the order of 10ÿ2 e AÊ ÿ2 for all types of atoms with the

chosen level of accuracy, giving Lerr about 3 � 10ÿ3 e AÊ ÿ2 in

both cases. The global error measures are given in Table 1.

These values are similar to those reported for ab initio

calculations. Thus, we are con®dent that the IASs have been

determined with high precision and the integrations are reli-

able. Some integrated properties for the atomic basins in

MADMA and the cation in MAHS have already been

published (Madsen, Flensburg & Larsen, 1998). The

remaining results are listed in Table 2.

3.2.1. Charges. Some basic properties of the charges

obtained from the IAS partitioning were demonstrated in a

previous paper (Madsen, Flensburg & Larsen, 1998). The

QTAM partitioning leads to a larger charge transfer between

the atoms than a summation of monopole populations, but the

charges of the whole fragments in the two partitioning

schemes are identical within the uncertainty. It was inferred

that transferability is applicable to the charges of chemically

equivalent basins, chemical functional groups and of the whole

fragments between different crystal structures. These conclu-

sions are underlined with the properties listed in Table 2.

3.2.2. Dipole moments. The dipole moment of the water

molecule in MAHS has been calculated. Listed in Table 3 are

the components and magnitude of the dipole moment calcu-

lated by two partitioning schemes: (I) Using the monopole and

dipole population parameters from the multipole model; (II)

using the integrated properties (charge and atomic dipoles)

from the QTAM partitioning. The results from the two

partitioning schemes are in excellent agreement. The mono-

pole and dipole population parameters give an exact answer

for the dipole moment for the multipole model. This is,

however, only the case if there is negligible correlation with

Table 2
Integrated charge (q), volume (V) and Laplacian (L) of some of the
atomic basins in MAHS and MADMA.


 q(
) (e) V(
) (AÊ 3) L(
) (10ÿ3e AÊ ÿ2)

MAHS
C(1) 1.45 5.4 ÿ1.2
C(2) ÿ0.06 8.9 ÿ2.0
O(1) ÿ1.31 16.6 ÿ1.5
O(2) ÿ1.15 16.3 ÿ1.9
H(1) 0.69 1.0 ÿ1.9
H(2) 0.11 6.0 ÿ1.5
H(3) 0.11 7.5 ÿ2.0
�(COOÿ) ÿ1.01 38.3
�(CH2) 0.16 22.3
�(anion) ÿ1.02 122.3
O(3) ÿ1.27 22.3 2.8
H(8) 0.66 1.5 ÿ4.4
�(H2O) 0.06 25.5

MADMA
C(1) 1.23 5.9 ÿ3.1
C(2) ÿ0.11 12.5 ÿ2.9
O(1) ÿ1.00 17.1 3.9
O(2) ÿ1.04 18.0 1.8
H(2) 0.14 6.2 6.5
D(2) 0.66 1.0 7.1
�(COOÿ) ÿ0.81 41.0
�(CH) 0.03 18.7
�(anion1) ÿ0.90 120.4
C(3) 1.27 5.7 ÿ2.9
C(4) ÿ0.11 12.0 ÿ3.3
O(3) ÿ0.98 17.6 2.2
O(4) ÿ1.03 16.4 1.7
H(4) 0.13 6.0 7.2
D(4) 0.71 0.9 6.9
�(COOÿ) ÿ0.74 39.7
�(CH) 0.02 18.0
�(anion2) ÿ0.73 116.3

Figure 1
Coordinate system and � sphere of an atom. The integration ray is shown
with seven probe points starting from the � sphere stepping outwards to
point 5 where the IAS has been crossed. The step length is halved and the
direction of propagation is reversed. This is repeated at point 6.



the other atoms in the structure. The excellent agreement of

the two partitioning schemes is in this case a veri®cation of

that assumption. The integration gives furthermore a result

re¯ecting the m site symmetry of the water molecule (�2 is

close to zero). Both results agree well with other determina-

tions of the dipole moment of water determined from

diffraction and other techniques (Spackman, 1992; Espinosa et

al., 1996). The IASs of O(3) and H(8) are displayed in Fig. 3.

Since the water molecule lies in a mirror plane, only one H

atom is displayed, allowing a better view of the IAS that is

shared by the O(3) atom and the symmetry-equivalent H(80)
atom, which is not shown. The IASs are colour-coded by the

electrostatic potential in the crystal (Stewart, 1982). The

colours re¯ect the direction of the dipole moment, with the

O(3) end having a lower electrostatic potential than the H(8)

and H(80) end.

3.2.3. Error estimates of integrated properties. The inte-

grated properties will be slightly biased by the actual model-

ling of the pseudo-atoms, i.e. the properties from an IAM are

different from those obtained from a full multipole model.

This is similar to the bias from using different levels of basis

set found in quantum-chemical calculations. Despite this, we

®nd a conservative estimate of the uncertainty in the inte-

grated properties to be ca 5%. This estimate of the uncertainty

is based on tests with different integration parameters and

different crystallographic models.

4. Conclusions

We have successfully implemented the QTAM partitioning of

the electron density for experimentally determined charge

densities in the program VALRAY. Physically meaningful

properties are determined by integration over the atomic

basins.

We ®nd that the current results are encouraging for further

investigations on using the QTAM partitioning to extract

experimentally determined atomic properties as an alternative

to other partitioning schemes.

We thank Dr Carlo Gatti for valuable discussions.
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Table 3
Dipole moment of the water molecule in MAHS as calculated by the pseudo-atom population parameters (Pop) and by QTAM partitioning.

The orientation of the dipole moments is with respect to the multipole coordinate system: xjja, yjjb and zjjc�. The origin for these calculations is at the centre of
mass for the water molecule. Standard uncertainties are in parentheses.

Type q (e) �1 (e AÊ ) �2 (e AÊ ) �3 (e AÊ ) j�j (e AÊ ) j�j (10ÿ30 C m)

Pop 0.081 (22) 0.102 (14) 0.000 (16) 0.484 (14) 0.494 (14) 7.92 (23)
QTAM 0.059 0.099 0.00001 0.501 0.511 8.18

Figure 2
ORTEP (Johnson, 1976) drawings showing the labelling scheme of the entities in MAHS (left) and MADMA. Ellipsoids are drawn at the 50%
probability level.
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Figure 3
Stereo drawing (Merritt & Bacon, 1997) of the IASs for O(3) and H(8) in MAHS. The H(8) fragment is translated 0.75 AÊ away from O(3) along the
O(3)ÐH(8) interaction line. The depression on the front side of O(3) is the IAS shared with the symmetry-equivalent H(80) atom. The IASs are colour-
coded by the electrostatic potential in the crystal. Colours range from red (ÿ555 kJ molÿ1) over green (0 kJ molÿ1) to blue (+1111 kJ molÿ1).


